
DAFNI Pilot 3: Station Demand Model

Contents
DAFNI Pilot 3: Station Demand Model .. 1

Introduction to DAFNI Pilots .. 2

Overview of Station Demand Model ... 2

Analysis of Software ... 3

Code .. 3

Input data .. 3

Configuration .. 3

Output data ... 4

Pilot Scope .. 5

Objectives.. 5

Challenges ... 5

Outcomes .. 6

Benefits ... 8

Lessons Learned ... 9

For the Platform .. 9

For the Pilots ... 9

Introduction to DAFNI Pilots
DAFNI will provide the National Platform to satisfy the computational needs in support of data
analysis, infrastructure research and strategic thinking for the UK’s long term planning and
investment needs. The platform will support academic research that is aiming to provide the UK with
a world-leading infrastructure system that is more: efficient, reliable, resilient and affordable. DAFNI
will support big data analytics, simulation, modelling and visualisation.

DAFNI Pilots are a series of projects that run alongside the DAFNI core platform development and
seek to take existing established infrastructure codes and implement them in a Cloud based
environment that emulates the expected future DAFNI system. DAFNI pilot projects are submitted
by the members of the DAFNI community and projects are chosen based on proposers’ resource
availability, benefits to DAFNI such as validating DAFNI’s components, stress testing the DAFNI
hardware etc. Each pilot project typically runs for 3-6 months and is supported by the DAFNI pilot
team, consisting of 2-3 software developers. This will enable the following benefits to the DAFNI and
its community:

 Demonstrate the capabilities of the DAFNI infrastructure.
 Feed the community requirements into improving and maturing the DAFNI infrastructure.
 Provide early access for the modellers to test their models on the DAFNI platform.
 Provide additional access to infrastructure models that may form part of the DAFNI service.
 Allow exploration of visualisation techniques useful to infrastructure modellers.
 Highlight typical data set requirements for infrastructure research.

Overview of Station Demand Model
The UK rail network is the oldest rail network in the world and comprises 15,811 km of track and
features a total of 2,566 stations1. According to Network Rail, 1.7 billion people per year travel by rail
in the UK and the number of passengers is rising by 6% each year2. With ever increasing demand for
the rail network to be as efficient and wide-reaching as possible, it is imperative that any
improvements or additions to the network are thoroughly thought out before spending the limited
budget available.

Recent projects like HS2 and Crossrail have highlighted this need for thorough planning through the
negative press each has received with HS2 being labelled as a “vanity project” and Crossrail facing
multiple setbacks and delays. An area of particular importance is ensuring that any new stations
added to the network will actually be used. There is no point in adding a new station to the network
if passengers will stick to using the station that they used previously.

One of the primary factors when considering an individual’s station choice is how easy it is for them
to get to that station. Additional factors might include how many parking spaces are available, the
frequency of service to that station and whether or not there are ticket machines, bus stations or
CCTV cameras.

1 Rail infrastructure, assets and environmental – 2016–17 Annual Statistical Release (PDF). Office of Rail and
Road. 24 October 2017. Available at: https://orr.gov.uk/__data/assets/pdf_file/0008/25838/rail-
infrastructure-assets-environmental-2016-17.pdf
2 Passengers - Our role in getting you where you need to go. Network Rail. Available at:
https://www.networkrail.co.uk/communities/passengers/

Marcus Young and Simon Blainey from the University of Southampton have developed a trip-end
model which can be used to estimate the average number of trips made by rail from a particular
area. Trip-end models are specifically applicable to the construction of new stations to estimate how
many trips would be made from that new station. A trip-end model also incorporates additional
information on demographic, socio-economic and service-related data for areas around new
stations3. This Station Demand Model can be used to predict how many people would switch to
using a newly proposed station as opposed to their previous station of choice.

One common weakness of trip-end models is in how station catchments are defined. This usually
involves either using a distance or time-based buffer, or dividing the study area into zones and
assigning each zone to its nearest station. However, all of these approaches produce discrete and
non-overlapping catchments and suggest that anyone within a catchment will always use the same
station and that stations do not compete with each other directly4, which does not reflect actual
travel behaviour. The station demand model used in this pilot addresses this problem by allocating a
set of stations to each area and then using probabilities (derived through station choice models) to
decide how many people would choose each of the stations.

Analysis of Software
Code
The model is written using R and is built with RStudio. The code is committed to a private GitHub
repository. The R code is comprised of nearly 4,000 lines of code across about 20 files. The model
also makes use of 8 SQL scripts which are used to prepare data for processing.

Input data
The model takes in a wide range of input data. This was all sent to DAFNI in a database dump
created by Marcus and includes the following data:

 Polygons which show the areas attributed to different postcodes and workplace centroids in
Great Britain as well as an outline of GB as a whole.

 The population per postcode from the 2011 census data.
 The average household size per Local Authority District in the UK.
 The station locations throughout GB.
 Ordnance Survey’s Openroads data which contains road plotlines as well as their locations.

Configuration
The model can be configured in a number of ways. Firstly, the model can either be run in
“concurrent” or “in isolation” mode. In isolation mode, each of the stations will be treated as if they
were added to the network separately. This allows sensitivity analysis to be done if the same station
is added more than once with varying levels of parking spaces, service frequency, etc. Concurrent
mode treats the stations as if they were all being added to the network at once.

3 Passenger demand forecasting for third party funded local rail schemes – Guidance Note. Department for
Transport. 24 October 2011. Available at:
https://assets.publishing.service.gov.uk/government/uploads/system/uploads/attachment_data/file/3978/gui
dance-note.pdf
4 Development of Integrated Demand and Station Choice Models for Local Railway Stations and Services.
Marcus Young. 2017. Available at: https://eprints.soton.ac.uk/414263/1/myoung_etcpaper_2017.pdf

In either mode, stations must be added to the model run. Each station has the following
configuration options:

Configuration Option Description
ID ID of the new station
Name Name of the new station
Region The region in which the new station will sit
Station NGR Easting and Northing values for the station itself
Access NGR Easting and Northing values for the station’s access point
Category The category of station (either E (small staffed) or F (small

unstaffed))
Model abstraction for stations A list of pre-existing station CRS codes for which abstraction

results should be carried out.
Parking Spaces The number of parking spaces available at the station
Frequency The frequency of service to this station
Frequency group All stations in the same frequency group will have the same

frequency. This is due to them being on the same rail line and
so any train passing through one station will pass through the
others in the group. Different frequencies can occur if more or
fewer trains stop at the new station.

CCTV Whether or not there is CCTV at the station
Ticket Machine Whether or not there is a ticket machine at the station
Bus Interchange Whether or not there is a bus interchange at the station
Terminal Station Whether or not the station is at the end of the line
Electric Services Whether or not the station has electric services
Travelcard boundary Whether or not the station is at a travel card boundary

In addition to station metadata, additional exogenous data can be added to a model run. This comes
in the form of either adding housing, population or jobs to either a postcode or workplace centroid.
The idea of this option is to allow users to update areas where there has been significant growth
since the 2011 census, or is expected to occur in the near future.

The intensive part of the processing for the model actually occurs in the Postgres database to which
the model is connected. This is where the catchment areas are calculated by using the Postgres
extension, pgRouting5. To generate the choice sets for each of the postcodes within a certain service
area, the drive time from each one of these postcodes to the new and existing stations must first be
calculated. This process is the longest-running aspect of the model run. However, this process runs
in parallel with the task being split across a number of CPU cores.

Output data
The output data is made up of two major parts: the proposed stations and the abstraction results.
The proposed stations results contain polygons for the service areas of each station in the job
submission as well as the probability catchment for that station. The abstraction results are only
generated if the “model abstraction for stations” option was filled in during job submission. These
results show the probabilistic catchments for each station in the “model abstraction for stations” list
both before the new stations were added and afterwards. This gives a good representation of the

5 pgRouting. Available at: https://pgrouting.org/

effect that the new station(s) could have on the pre-existing network in terms of drawing passengers
away from one station and into another.

Pilot Scope
Objectives
The main aims for the pilot project were to:

 Provide a simple way to run the application on cloud-based infrastructure so as to form a
part of DAFNI.

 Allow the user to vary the input parameters to the model through a simple user interface
which does not depend on technical knowledge of the model code.

 Provide a high-powered database for the pgRouting process to run in. This should have 32
cores available to it as a minimum and should mean that the model runs much more quickly.

 Give the user a simple way to visualise the results. This will involve plotting the probability
catchments on a map of the UK and presenting results tables.

Challenges
As previously mentioned, the model is entirely written using a combination of R and SQL scripts. One
of the first tasks was to bundle the model into a Docker container. This turned out to be particularly
challenging due to the way that the model was developed using RStudio which handles all the
packaging of the different R functions. The solution was to use the rocker/verse6 Docker image from
Dockerhub to include RStudio’s terminal. The model can then be installed correctly, replicating the
functionality which is provided by RStudio.

The model relies heavily on various GIS data both in its inputs (OpenRoads data) and outputs
(catchment polygons). This meant that the Django API had to be modified to be able to handle this
correctly in order to be able to effectively store GIS data in its database and serialize this into JSON.
For this, Django-rest-framework-gis7 was used; although parts of the code had to be modified in
order to be able to achieve the nesting which was required by the results data.

Deciding on the architecture for the backend system was an additional challenge. As previously
mentioned, the majority of the intensive processing occurs in a database. In addition to this, the
database must be pre-loaded with a large amount of pre-processed data. Including all of this data in
the image itself would make an extremely large image size. Downloading this data each time the
model runs would also take a long time. A solution was therefore to add all of the pre-processed
data to a central database where all job processing would happen. This database has 32 cores,
768GB of memory and is backed by a flash-based storage area network. The database for the station
demand model is 6GB when uncompressed.

One disadvantage of this approach is that if a user were to run a job and request 32 cores then
another user would have their job waiting until the previous job completes. This is something to
think about going forward when we have other models which make use of databases to do their
processing. One alternative would be to keep the database dump on fast storage on the server and
to then pull this in to a fresh database each time the model was run. This would ensure that a model
run would only ever be waiting if all of the Kubernetes resources had been exhausted.

6 Rocker/verse Docker image. Rocker. Available at: https://hub.docker.com/r/rocker/verse
7 Django rest framework GIS. Available at: https://github.com/djangonauts/django-rest-framework-gis

Outcomes
This pilot builds upon the previous backend and middleware which was developed in the previous
pilots. However, the introduction of GIS data and nested parameter submission required a refactor
of the backend to be able to support this new type of model. This refactor puts the backend in a
much better state to be able to work with a wider variety of models as it no longer requires models
to be in a generic format.

As well as the updates to the backend infrastructure, a front end interface to the model was
developed using Vue JS. A new approach was also taken in developing the front end as NUXT was
used for this pilot in an effort to unify the front end with the direction taken by the core team in
their front end design.

In summary, this pilot project has provided the following:

 A web interface built in the Vue.js JavaScript framework. This interface allows remote access
to the models without any need to install software on the local computer. All the user
settable parameters are exposed through this interface and can be altered before a
simulation is submitted. The server side code runs on a machine within DAFNI and allows
computational jobs to be submitted onto DAFNI cloud resources.

 A database has been set up to store the job parameters and results from simulation jobs.
This allows a series of jobs to be submitted by the user and then compared to see the effects
of the changes to parameters. This allows a persistent store of simulations.

 For submitting jobs to the DAFNI cloud infrastructure the set of APIs developed for previous
pilots have been extended to allow them to work with the requirements of the station
demand model. The database had to be updated to store the new parameters and results
and the job queue adapted to allow different images to run as required.

 The visualisation requirements mainly involved plotting probability catchments on a map of
the UK. These plots are accompanied by a table which details how many people would begin
to use a new station based on the results of the model run. For abstraction analysis, the
number of potentially lost entries/exits at each modelled existing station is also shown.

A typical job submission process is shown in Figures 1, 2, and 3. This shows the process of setting
configuration options, adding new stations and adding exogenous data.

Figure 1 - Configuring the job. Allows the user to choose between "isolation" and "concurrent". Also allows the setup of frequency groups.

After a job has been submitted and the run has completed, results can be accessed on the
visualisation page. Figure 4 shows the probabilistic catchment for Penryn station after having added
a station near Helston (although this is only a test scenario so the figure is only meant as a guide to
what the visualisation looks like).

Figure 2 - Adding stations to the model run. Allows the user to configure each station individually.

Figure 3 – Adding exogenous data to the model run. Allows a user to add population, households and/or jobs to a model
run.

The visualisation page can also show the abstraction analysis results in a table. This table gives a
more precise view of how many trips there are at each station before and after the addition of a
new station. This table is shown in figure 5.

Benefits
The main benefits from pilot 3 were:

 Showing that R-based models can easily be adapted to run in the same backend framework
that was developed for the previous pilots.

 Demonstrating that DAFNI can provide a significant speed-up for running models compared
to a typical workstation PC by simply providing a large amount of compute resource to the
model.

 The provision of an easy to use interface to the model will help to make the software much
more accessible to non-technical users who wish to investigate the model’s behaviour.

 The usage of GIS data and the need to store such data has helped to define how this will be
done effectively moving forward.

Figure 4 – Visualising the results of a test run. Showing the probabilistic catchment around Penryn
station.

Figure 5 – Viewing the abstraction analysis results in a table.

 The demonstration of efficient use of PostGIS and pgRouting with Open Roads data may
prove useful to future projects on DAFNI.

 In order to get user feedback from the pilot, we opened up the user interface to the
modellers. This process has ensured that we have a good understanding of how to do this
and we can now do the same for previous pilots.

Lessons Learned
For the Platform

 The knowledge gained about GIS data (and in particular about PostGIS and Django rest
framework GIS) will undoubtedly be invaluable for the core team moving forward. As more
data is added into the NID, there will be a requirement to be able to store and download GIS
data. After extensive research during this pilot, it is clear that a PostGIS database will be
needed and that Django Rest Framework GIS would be a good choice for serializing this data.
Also, the additions that had to be made to the DRFG package will also be useful for the core
team.

 We will have to think about how to handle models which make use of intensive processing
on the database. The solution for this pilot is not ideal and this would form a good case
study for how to improve moving forward. The discussions with our systems administrator
seem to point at storing the database dump on fast storage and then recreating the
database each time. This will add extra run time to the model but it will have the benefit of
being able to run more instances of the model in parallel without any slowdown.

 The interactive map for this model has many more points plotted on it than any of the
previous models. The previous solution (used in pilot 1) was to use Mapbox to plot all of the
points on the map. This turned out not to scale well when plotting millions of points (one
point for every postcode and workplace centroid). The interactive map for this model now
uses Leaflet instead and this is much more scalable.

For the Pilots
 The earlier we start to make the front end available to the piloteers (i.e. the researchers

providing the model) the better. In this case, the front end was probably made available
after it should have been which meant that valuable feedback from the piloteers might have
been unable to make it into the final product. In future, we should try and operate in a more
agile way where the piloteers actually get access to the UI as opposed to just being shown it
through a video call.

 Tagged releases of the piloteers’ code base are incredibly useful. We should set out at the
outset of future pilots that models will need to be tagged for release prior to the end of the
pilot. This will ensure that we always have a solid base which will not change meaning that
this repository can always be pulled from and we can expect the same code.

 It is useful for the piloteers to be able to see the logging output from a model run. This
allows them a much better insight into whether the model is running correctly. For the
purposes of the pilot, a very rudimentary logging system was implemented which simply
posts the set of logs after a model run has finished. This could be made much more effective
by streaming the logs to the API as they occur. This would give the user a live output of their
model run.

