Maritime shipping digital twin for construction waste distribution

Dr. Evi (Evangelia) Manola Prof. Liz Varga Industrial Partner: National Highways

Infrastructure Systems Institute | UCL Department of Civil, Environmental and Geomatic Engineering

CONTENTS

- Introduction of group & project (aims, expected impact)
- Eco-design principles
- Cement imports
- Maritime shipping case study
- Innovations in shipping
- Digital twin concept
- API data scraping & outcome of digital twin

The Interdisciplinary Circular Economy Centre for Mineral-based Construction Materials (ICEC-MCM)

MCM flows, stocks & impacts

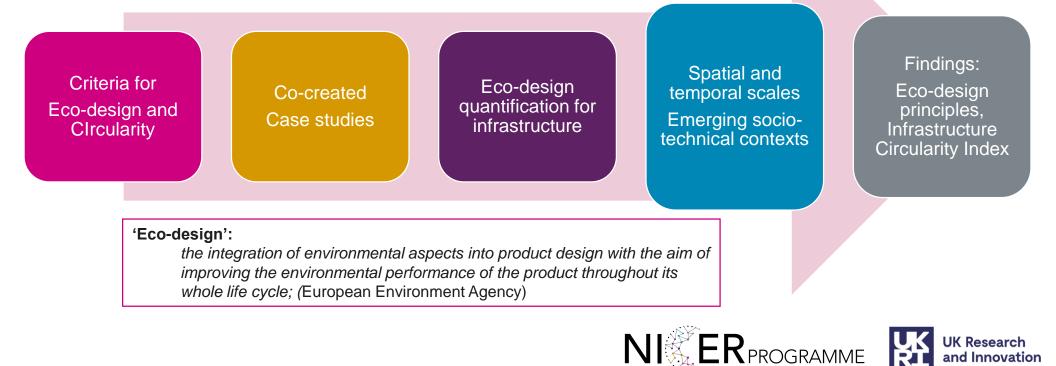
- 1A. Material flow analysis (MFA)
- 1B. Data needs
- 1C. Impact & risk characterisation
- 1D. Environmental & social life cycle assessment (LCA)
- 1E. Socio-economic impact modelling

Technological innovation for MCM demand Reduction, circularity & impact reduction

- 2A. Design
- 2B. Material processing
- 2C. Manufacture
- 2D. Service
- 2E. Closing the Loop

Systemic enablers for MCM circularity

- 3A. Circular Economy Business models (CEBMs)
- 3B. Eco-design
- 3C. Decision-making
- 3D. Accounting & Finance
- 3E. Standards, policy & regulation



PROJECT AIM, OBJECTIVES

Project aim: Eco-design characterisation of MCM use in infrastructure, engineering and construction with the application of Circular Economy principles

Objective: To provide eco-design characterisation of MCMs and use this to develop ecodesign principles applicable for different relevant spatial and temporal scales, and socio technical contexts.

UK Research

EXPECTED IMPACT

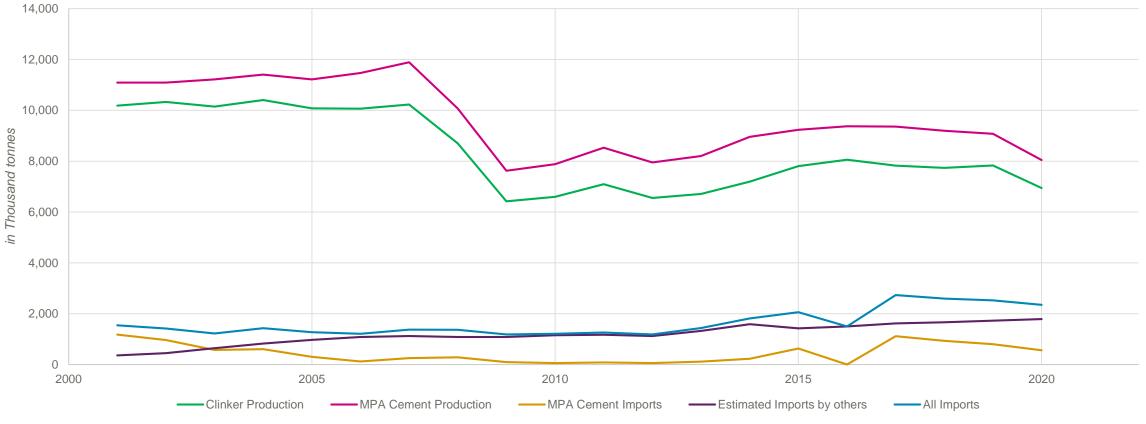
- Validated eco-design framework with actionable interventions in transport infrastructure
- Business practice changes
- Digital technology use
- MCM wastage management
- Natural resources management
- Over-design problems
- Collaboration of stakeholders

ECO-DESIGN PRINCIPLES

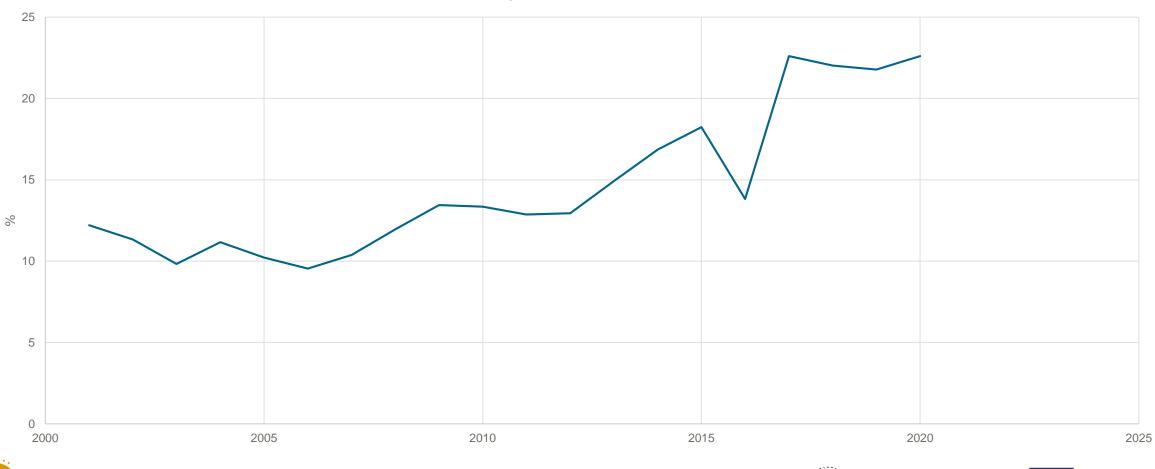
- Modular design & construction
- Reuse of waste products & assets
- Use & distribution of waste materials
- Data & Intelligence
- Modal integration
- Natural environment impact
- Maintenance & Durability
- Human factor

Principles relevant to maritime shipping case study

- Use & distribution of waste materials
- Data & Intelligence
- Modal integration
- Natural environment impact
- Human factor



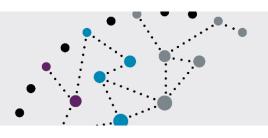
MPA DATA – CEMENT IMPORTS


Annual Cementitious Materials GB to 2014, UK from 2015

MPA DATA – CEMENT IMPORTS

% Imports of Total Cement

IMPACT ON ROADS


- Rule of thumb 1950s
- Road damage estimation Generalized Fourth Power Law
- Comparing the amount of pavement damage caused by vehicles with different weights, in terms of axle loads:

$$\left(\frac{W_1}{W_2}\right)^4$$

3rd Pillar in maritime shipping: DECARBONISATION

International maritime trade currently rests on two contractual pillars: Safety & commercial orders.

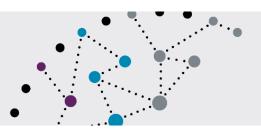
3rd Pillar: Decarbonisation, i.e. 'a contractual framework for decarbonisation actions and measures that will trump commercial orders, but will yield to safety.'

Need for a new contractual structure for Maritime decarbonisation

"Steam Fast, Then Wait" (SFTW): 'ships sail to their port of destination at their service speed, without regard for the conditions at that port. Largely as a result of this, dry bulk carriers and tankers spend about <u>8-10% of their entire life at anchorage</u>.'

Just-in-Time (JiT) practices, 'which are widely adopted in supply chains, would <u>result in emissions</u>' <u>savings in the order of 20-25%</u>.'

UKRI Interdisciplinary Circular Economy Centre for Mineral-based Construction Materials


https://www.gard.no/web/updates/content/32513672/the-third-pillar-a-contractual-

architecture-for-maritime-decarbonisation

INNOVATIONS IN SHIPPING

Autonomous electric maritime shipping \rightarrow Common policy framework as autonomous vehicles

Yara Birkeland (Norway):

"The first ever zero emission, autonomous ship"

UKRI Interdisciplinary Circular Economy Centre for Mineral-based Construction Materials

inary https://www.kongsberg.com/maritime/support/themes/autonomou y^{Centre} s-ship-project-key-facts-about-yara-birkeland/

Oceanbird, wing sails Reducing cargo carbon emissions by 90%

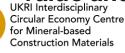
https://newatlas.com/marine/oceanbird-wallenius-wing-sail-cargo-ship/

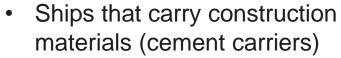
MARITIME SHIPPING DIGITAL TWIN

Modifying the way waste is distributed: *Minimizing trucks off the roads Modal integration of roads and sea transportation*

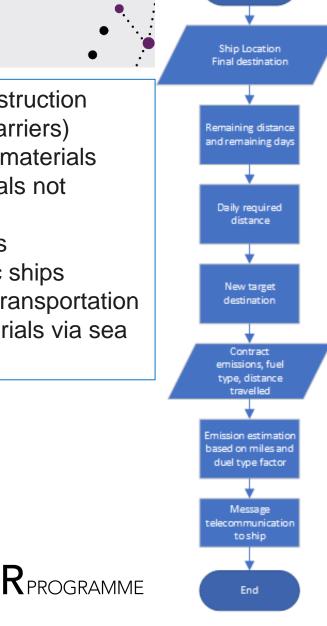
Data from website - live tracking

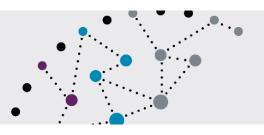
Daily location update connected to our database


Estimation of daily distance travelled and emissions produced


Calculation of required daily travel

Checking if it is rushing!!

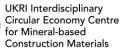

Giving feedback to the ship with emissions value and if they need to go slower or not



- Bringing in required materials
- Getting rid of materials not needed
- Digitalization of ports
- Autonomous electric ships
- Focus on domestic transportation of construction materials via sea (port to port)

Start – Ship ID

API services for maritime data



'Marinetraffic.com' API services

Vessel Positions of a Static Fleet

Vessel AIS Identifier (MMSI) Position Data (LAT, LON) Navigation Data (Heading/Course/Speed) Timestamp Key Vessel Particulars (flag, dimensions, type etc.) Voyage Information (destination, ETA, etc.)

API – Data scraping

	mmsi	imo	ship_id	lat	lon	speed	heading	course	timestamp	shipname	callsign	flag	length	width	draught	year_built	type_name	destination	eta
									2022-06-24									(2022-06-25
22	24655000	8012267	167790	43.80758	-7.4546	113	274	276	T05:21:42	ENCOFRADOR	EASS	ES	107	17	70	1982	Cement Carrier	ESVIG	T01:00:00
									2022-06-24										2022-06-24
2!	55806478	9884655	6518982	52.01331	-5.79166	134	359	359	T05:29:19	CEMCOASTER	CQET3	PT	97.98	15.62	46	2021	Cement Carrier	DUBLIN	T15:00:00
									2022-06-24										2022-06-25
22	24655000	8012267	167790	43.81936	-7.8554	103	267	268	T06:55:32	ENCOFRADOR	EASS	ES	107	17	70	1982	Cement Carrier	ESVIG	T01:00:00
									2022-06-24										2022-06-24
2!	55806478	9884655	6518982	52.39397	-5.81713	121	356	356	T07:13:08	CEMCOASTER	CQET3	PT	97.98	15.62	46	2021	Cement Carrier	DUBLIN	T15:00:00
									2022-06-24										2022-06-25
22	24655000	8012267	167790	43.77353	-8.17294	105	256	256	T08:15:22	ENCOFRADOR	EASS	ES	107	17	70	1982	Cement Carrier	ESVIG	T01:00:00
									2022-06-24										2022-06-24
2	55806478	9884655	6518982	52.57784	-5.82895	92	358	358	T08:15:28	CEMCOASTER	CQET3	PT	97.98	15.62	46	2021	Cement Carrier	DUBLIN	T15:00:00
									2022-06-24										2022-06-25
22	24655000	8012267	167790	43.66984	-8.75257	110	260	255	T10:42:52	ENCOFRADOR	EASS	ES	107	17	70	1982	Cement Carrier	ESVIG	T01:00:00
									2022-06-24										2022-06-24
2	55806478	9884655	6518982	52.9193	-5.84496	86	359	359	T10:43:08	CEMCOASTER	CQET3	PT	97.98	15.62	46	2021	Cement Carrier	DUBLIN	T15:00:00
									2022-06-24										2022-06-24
2	55806478	9884655	6518982	53.14859	-5.94708	90	343	344	T12:27:27	CEMCOASTER	CQET3	PT	97.98	15.62	46	2021	Cement Carrier	DUBLIN	T15:00:00
									2022-06-24										2022-06-25
22	24655000	8012267	167790	43.60578	-9.16761	107	256	257	T12:27:51	ENCOFRADOR	EASS	ES	107	17	70	1982	Cement Carrier	ESVIG	T01:00:00

Outcome intelligence of digital twin

- Carbon emissions estimation on each ship journey
- Potential emission savings if following digital twin advice (ETA journey estimation to adjust speed)
- Potential emission savings with electric ships

