

DAFNI Transport Sandpits 2024

Team: ClimaTrack Solutions

Forecasting resilience of railway network under propagating uncertainty

DAFNI Lunchtime seminar, 22 May 2024

Team composition

- Co-PI: **Ji-Eun Byun** (University of Glasgow)
- Co-PI: Giuliano Punzo (University of Sheffield)
- Researcher Co-I: Qian Fu (University of Birmingham)
- Co-I: Iryna Yevseyeva (De Montfort University)
- Co-I: Tohid Erfani (University College London)
- Co-I: Konstantinos Nikolopoulos (Durham University)

DAFNI Data & Analytics Facility for National Infrastructure

Key challenges

Network Rail bears up to £100 million loss per year due to weather events:

- Can we better forecast weather-related disruptions of railway service?
- Can we identify weak links in a network system?

Key challenges

- Data integration across datasets with diverse codifications
- High **uncertainty** in weather events and asset failures
- Uncertainty propagating through jointly performing assets
- Lack of ready-use computational tools for decision-making

⁽Credits: Network Rail)

Proposed solution

Key challenges

- Data integration
- High uncertainty
- Uncertainty propagation
- Lack of ready-use computational tools

Strategy (1): Fragility/weather data

Data on Anglia region

- Historical rail delays (04/2006 03/2015)
 - Network Rail TRUST data (incl. time, location, incident, causation reasons and delay minutes)
- Asset (railway tracks _____)
- Lineside vegetation coverage (15 species)
- Weather (5 × 5 km grids
 - Temperature
 - Wind speed/direction
 - Precipitation
 - Relative humidity
 - Solar radiation

Strategy (1): Fragility/weather data

Logistic regression (No. of records in the test set: 156)

Incidents captured: ~85%

Fu, Q., & Easton, J. M. (2018). Prediction of weather-related incidents on the rail network: prototype data model for wind-related delays in Great Britain. *ASCE-ASME Journal of Risk and Uncertainty in Engineering Systems, Part A: Civil Engineering*, 4(3), 04018027.

Weather-related

Max. gust speed (×10 mph) Avg. wind direction [90°, 180°) Avg. wind direction [180°, 270°) Avg. wind direction [270°, 360°) Temperature deviation (°C) Max. relative humidity (%) Max. snowfall (mm) Max. total precipitation (mm)

Vegetation cover fraction (\times 10%)

Alder Ash Beech Birch Conifer Elm Horse chestnut Lime Oak Poplar Shrub Sweet chestnut Sycamore Willow Others

Model estimation result

Variable	Coef. est.	Std. err.	z -statistic	P> z	[95% conf. interval]	Odds ratio
(Intercept)	-14.7823	0.976	-15.153	0.000	[-16.694, -12.870]	
Weather-related						
Max. gust speed (×10 mph)	0.9248	0.057	16.169	0.000	[0.813, 1.037]	2.521
Avg. wind direction [90°, 180°)	-0.9495	0.289	-3.280	0.001	[–1.517, –0.382]	0.387
Avg. wind direction [180°, 270°)	-0.9476	0.223	-4.240	0.000	[-1.386, -0.510]	0.388
Avg. wind direction [270°, 360°)	-0.3964	0.245	-1.617	0.106	[-0.877, 0.084]	0.673
Temperature deviation (°C)	0.6358	0.031	20.654	0.000	[0.576, 0.696]	1.889
Max. relative humidity (%)	0.9735	0.093	10.445	0.000	[0.791, 1.156]	2.647
Max. snowfall (mm)	0.3235	0.287	1.128	0.259	[-0.239, 0.886]	1.382
Max. total precipitation (mm)	-0.0366	0.033	-1.097	0.273	[-0.102, 0.029]	0.964
Vegetation cover fraction ($ imes$ 10%)						
Alder	0.1813	0.857	0.212	0.832	[-1.498, 1.860]	1.199
Ash	0.1860	0.227	0.821	0.412	[-0.258, 0.630]	1.204
Beech	-1.3831	1.182	-1.170	0.242	[-3.700, 0.933]	0.251
Birch	-0.2200	0.304	-0.724	0.469	[-0.815, 0.375]	0.803
Conifer	0.1994	0.797	0.250	0.802	[–1.362, 1.761]	1.221
Elm	0.9973	0.910	1.096	0.273	[-0.786, 2.780]	2.711
Horse chestnut	-1.6999	2.333	-0.729	0.466	[-6.272, 2.873]	0.183
Lime	-0.7794	1.189	-0.656	0.512	[-3.109, 1.550]	0.459
Oak	0.0329	0.233	0.141	0.888	[-0.424, 0.490]	1.033
Poplar	-0.5946	0.563	-1.056	0.291	[-1.699, 0.509]	0.552
Shrub	-0.0462	0.119	-0.39	0.697	[-0.279, 0.186]	0.955
Sweet chestnut	0.8613	0.949	0.908	0.364	[-0.998, 2.721]	2.366
-						

Strategy (2): Rail network simulation

Simulation of rerouting and unmet demand

```
   Input:

     o R, residual network, (copy of the partially functioning
          network), with edge attributes:

re-assigned flow, f<sup>r</sup><sub>uv</sub> = 0

            • capacity, c_{uv} = 50\% of the steady state traffic
     o D^{re} = \{D_{od}^{re}, ...\}, set of OD trips that need to be distributed in
          R.

   initiate: i=0,

   repeat

     • For all OD pair that D_{od}^{re} > 0:
            if there is no path in R from o to d with capacity:

   T' re od = 0

   if there is a path, P<sup>r</sup><sub>od</sub> = {e<sub>ou</sub>, e<sub>uv</sub>, ..., e<sub>wd</sub>}, from o to d

                 with capacity that is both the shortest and the
                 geographical length of which is within twice the original
                 path,
                   • T'_{od}^{re} = \min(c_{ou}, c_{uv}, \dots, c_{wd}), where c_{uv} is the
                        available capacity of edge e_{\mu\nu}
                    • For all edges in P_{od}^r: f_{u,v}^r += T'_{od}^r
     o For all edges in R:
            • if f_{u,v}^r > c_{uv},
                   • reduction factor \varphi_{uv} = c_{uv}/f_{u,v}^r

   c<sub>up</sub> = 0

            • if f_{u,v}^r \leq c_{uv},
                   • reduction factor \varphi_{uv} = 1
                    • c_{uv} = f_{uv}^r
     o For all OD pairs,
            • \varphi_{od} = \min(\varphi_{ou}, \varphi_{uv}, \dots, \varphi_{wd})
            • T_{od}^{re} + = T'_{od}^r * \varphi_{od},
            • D_{od}^{re} -= T'_{od}^r * \varphi_{od}
     o remove edges that c_{uv} = 0 from R
     o i+=1

   until i=multi-search cut-off

   Return T<sup>re</sup>, trips get delivered via rerouting
```

Rerouting: Edmonds-Karp algorithm

Demand and Supply: Averaged Data from Network Rail

Residual demand = Total original demand demand using damaged/removed edges + demand rerouted to not use damaged edges

Li, Q., Punzo, G., Robson, C., Arbabi, H., & Mayfield, M. (2022). A Novel Approach to Climate Resilience of Infrastructure Networks. *arXiv preprint arXiv:2211.10132*.

Strategy (3): System reliability methods

Event decomposition algorithm for coherent systems

- Better component states do not worsen a system state.
- Less time and memory than brute-force MCS or AI methods.

Illustrative event spaces

Strategy (3): System reliability methods

MBNpy toolkit

- A general, open-source tool for system reliability methods
- Example: Highway network & seismic risks

BNS-JT Public			
ີ່ຢ ⁹ python → ີ່ຢ ⁹ 2 Branches ⓒ 0 Tags	٩		
This branch is 266 commits ahead of, 5 commit	ts behind main .		
📻 jieunbyun example scripts			
+funTrans	add bnb fns		
🖿 +funs	Generalise Branch		
@Branch	add run_bnb; den		
Cpm	Made two functio		

Outputs on DAFNI platform

National infrastructure database (NID)

Focus on strong wind and heatwaves

D1- Aggregated datasets of **weather**related disruptions

D2 - A weather-related **risk map** of the railway network in the Anglia region

National infrastructure modelling service (NIMS)

D3 - A risk mapping software (in Python)

Impact

Risk-informed forecasting of weather-related disruptions

Exploitation of regional data and network topology

Collaborative, continuous model calibration via DAFNI platform towards ever more reliable railway service.

Capitalising on the project findings for a full-nation scale project in partnership with Network Rail

Conclusion

Problem: Increasing weather-related disruptions on railway services

Objective: Risk assessment tools and data compilation on railway network, with a particular focus on system-level performance

Strategy: Probabilistic models of weather + Fragility models of railway assets

- + Simulation of railway operation + System reliability engineering tool
- = Ready-use risk assessment tool of a railway network

Significance: [Public] Resilient operation on railway network [R&I community] A collaborative risk assessment tool applicable for general railway networks